
PHYSICAL REVIEW E JANUARY 1998VOLUME 57, NUMBER 1
Vortex formation in sheared flow driven fluctuations in nonuniform magnetized dusty gases

Arshad M. Mirza,* R. T. Faria, Jr.,† P. K. Shukla, and G. Murtaza‡

Institut für Theoretische Physik IV, Ruhr-Universita¨t -Bochum, D-44780 Bochum, Germany
~Received 18 July 1997!

The linear and nonlinear properties of low-frequency~in comparison with the ion gyrofrequency! electro-
static and electromagnetic waves in nonuniform, magnetized dusty plasmas with sheared plasma flows are
examined. For this purpose, the multifluid dusty plasma model is employed to derive the relevant nonlinear
equations for the modified dust-convective cells as well as for the coupled dust Alfve´n waves and dust-
convective cells. In the linear limit, we obtain dispersion relations which exhibit instabilities of both the
electrostatic and electromagnetic waves. In the nonlinear case, it is shown that the newly derived dynamical
equations for weakly coupled waves admit various types of vortex solutions. The results can have relevance to
the understanding of the salient features of nonthermal fluctuations and coherent vortex structures in nonuni-
form dusty magnetoplasmas such as those in the Earth’s ionosphere as well as in cometary tails and interstellar
clouds.@S1063-651X~98!11101-7#

PACS number~s!: 52.25.Vy 52.35.Lv 52.35.Mw
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I. INTRODUCTION

A dusty plasma is a low-temperature partially or ful
ionized gas, consisting of neutral atoms, electrons, ions,
micron-sized charged particulates of solid matter~dust
grains!. The latter, which are extremely massive, could
either negatively or positively charged to a high degree. T
electrostatic charging of the dust grains results from vari
processes such as the electron and ion collection from
ambient plasma, the photoelectric emission, the secon
electron and ion emission, the field emission, etc. The d
grains can acquire a huge electric charge~up to tens of thou-
sands of an electron charge!. Dusty plasmas are ubiquitous i
space environments as well as in laboratory discharges@1–
3#.

Recently, considerable attention has been focused
studies of waves@4–8# and instabilities@9–13#, as well as
the nonlinear structures@13–15# in dusty plasmas. Charge
dust grains can give rise to new normal modes, in additio
modifying the existing plasma wave spectra. For example
has been found that consideration of the dust dynamic
responsible for the dust-acoustic waves@5#, which are now
experimentally observed@11,16#. Linear properties of elec
trostatic and electromagnetic waves and mechanisms
their excitation in a uniform dusty plasma were reviewed
Verheest@17#.

In this paper, we study linear as well as nonlinear pro
erties of low-frequency~in comparison with the ion gyrofre
quency! electrostatic and electromagnetic waves in a nonu
form magnetized dusty gas. The latter waves cont
equilibrium density and magnetic field gradients as well
sheared plasma flows. It is found that free energy store
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the latter is coupled to modified dust-convective cells and
linearly coupled dust-Alfve´n waves and the dust-convectiv
cells. On the other hand, finite amplitude electrostatic a
electromagnetic waves interact nonlinearly. Accounting
convective and Lorentz force nonlinearities, we derive a
of nonlinear fluid equations in the presence of shea
plasma flows. It is found that the nonlinear equations ad
new classes of coherent vortex structures.

The manuscript is organized in the following fashion.
Sec. II, we derive the relevant nonlinear equations for b
the electrostatic and electromagnetic waves, by assum
that the wave frequencies are much smaller than the ion
rofrequency. The effects of dust charge perturbations are
incorporated. However, for simplicity, we discuss in Secs.
and IV, the linear and nonlinear results, respectively, wh
the dust charge perturbations are ignored. Finally, Sec
contains a brief summary and applications.

II. DERIVATION OF EQUATIONS

Let us consider a nonuniform multicomponent dus
plasma immersed in an inhomogeneous magnetic fi
B0(x) ẑ, whereB0 is the strength of the external magnet
field, and ẑ is the unit vector along thez axis. The dusty
plasma also has equilibrium density (]nj 0 /]x) and velocity
(]v j 0 /]x) gradients, which are maintained by some exter
sources. Herenj 0 andv j 0 are the equilibrium density and th
magnetic field aligned flow velocity of the particle speciesj
( j equalse for the electrons,i for the ions, andd for the dust
grains!.

The charge neutrality condition at equilibrium can be e
pressed as

ni05ne01Zd0nd0 , ~1!

whereZd0 represents the number of charges residing on
dust grains. The dust particles are supposed to be p
charges, and their sizes and the intergrain spacings are m
smaller than the characteristic scale lengths~viz. gyroradii,
Debye radius, etc.! of the dusty plasma. Furthermore, the
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1048 57MIRZA, FARIA, SHUKLA, AND MURTAZA
are sufficient numbers of dust grains in a Debye sphere
that the collective interactions, as described below, are int

In the presence of low-frequency waves, the electron
ion fluid velocity perturbations in the drift approximatio
(u] tu!vci5eB0 /mic) are

ve'vEB1~ve01vez!B' /B01vezẑ ~2!

and

vi'vEB1vip1v i0B' /B0 , ~3!

wherevEB5cẑ3“f/B0 and vip52(c/B0vci)@] t1n i1vEB
•“1v i0]z#“'f are the usualE3B0 and the ion polariza-
tion drifts, respectively;E52“f2(1/c)] tAzẑ is the elec-
tric field vector;f(Az) is the electrostatic (z component of
the vector! potential andB'5“Az3 ẑ is the perpendicular
component of the wave magnetic field,c is the speed of
light, and n i is the ion collision frequency. The compre
sional magnetic field perturbation has been neglected in v
of the low-b approximation. For electrostatic waves, we c
setB'50.

The parallel component of the electron fluid velocity pe
turbation is determined from thez component of Ampe´re’s
law, giving

vez'~c/4pne0e!“'
2 Az , ~4!

where“'
2 5]x

21]y
2 .

The dynamics of waves in our dusty plasma system
governed by the equations of the continuity, and the mom
tum, which are supplemented by Poisson’s equation and A
pére’s law. For our purposes, for the conservation of
charge density we have

] t~ne2ni !1ne,d~ne2ne0!2n i ,d~ni2ni0!1“•~neve2nivi !

50, ~5!

Poisson’s equation

“

2f54pe~ne2ni1Zdnd!, ~6!

and the parallel component of the electron momentum eq
tion,

~] t1ne1ve0]z1ve•“ !vez52~e/me!FEz1
1

c
~ve3B'!• ẑG ,

~7!

wherene is the electron collision frequency and the ions a
assumed to be singly charged. In Eq.~5! we include@18# the
source of the plasma particles which compensates for t
losses due to the recombination on the surface of the
grains. The effective collision frequencies for thermal Ma
wellian plasma particle distributions arene,d5n i ,d(11P)
5nchP(t1h)/h(11t1h), where P5nd0Zd0 /ne0 ,t5Te/
Ti , h5Zd0e2/aTe , and nch5vpi

2 a(11t1h)/v ti A2p.
Here a is the size of the dust grain,vpi the ion plasma
frequency,v ti the ion thermal velocity, andTe (Ti) the elec-
tron ~ion! temperature. ForP!1, we havene,d'n i ,d[n0.

In order to derive nonlinear set of equations, we wr
nj5nj 0(x)1nj 1 , wherenj 1!nj 0(x). Thus, substituting for
so
ct.
d

w

-

is
n-

-
e

a-
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st

-

the fluid velocities from Eqs.~2! and ~3! into Eq. ~5!, we
obtain, for electrostatic waves (B'50),

~dt1n0!S “

21
vpi

2

vci
2
“'

2 D f1
vpi

2

vci
2 ~n i1v i0]z!“'

2 f24pecẑ

3“S Zdnd

B0
D •“f14pene0]zvez

14pend0~] t1vd0•“ !Zd150, ~8!

wherevez is given by

~D te1ne!vez5
e

me
]zf1

c

B0
ẑ3“ve0•“f. ~9!

Heredt5] t1vEB•“, andD te5dt1(ve01vez)]z .
The dust charging equation forP!1 is given by@18#

~] t1vd0•“1nch!qd1'I e11I i1 , ~10!

whereI j 15*s jv j f 1 jdv is the perturbed current in the pre
ence of disturbances, ands i ,e5pa2(162Zde2/mi ,ev i ,e

2 a) is
the charging collision cross section; the plus~minus! sign
stands for the ions~electrons!. The first order distribution
function f 1 j (5 f j2F j ) is given by

~] t1vj•“ ! f 1 j2
qj

mjc
@c“f1] tAzẑ2vj

3~B02 ẑ3“Az!#•“vf j

52nd0s i ,e~v !v@ f 1 j~vj !2F j~v j !#, ~11!

whereF j is the equilibrium velocity distribution function. I
appears that the charging equation~10! is quite tedious for
electromagnetic waves in nonuniform magnetized du
plasmas.

It is straightforward to derive the relevant equations
electromagnetic waves from Eqs.~1!–~7!. We have

~dt1n0!S “

21
vpi

2

vci
2
“'

2 D f1
vpi

2

vci
2 ~n i1v i0]z!“'

2 f24pecẑ

3“S Zdnd

B0
D •“f1cdz“'

2 Az2
4p

B0
ẑ3“Az•“Jei

14pend0~] t1vd0•“ !Zd150, ~12!

and

D te~12le
2
“'

2 !Az2nele
2
“'

2 Az1c~]z1Sv0•¹…f50,
~13!

where vpi5(4pni0e2/mi)
1/2 is the ion plasma frequency

le5c/ vpe the collisionless electron skin depth,vpe the
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57 1049VORTEX FORMATION IN SHEARED FLOW DRIVEN . . .
electron plasma frequency,Jei5e(ni0v i02ne0ve0), and

Sv05 ẑ3“ve0 /vce. We have denoteddz[]z1“Az3 ẑ/B0.
The origin of various terms in Eqs.~8!–~13! is now clear.

The first three terms in Eqs.~8! and~12! come, respectively
from the deviation from the quasineutrality and the line
and nonlinear ion polarization drifts, whereas the fourth te
in Eqs.~8! and~12! originates from theE3B convection of
the equilibrium dust charge density, as the divergence of
difference of the electron and ion fluxes in nonuniform du
magnetoplasmas remains finite. The fifth and sixth term
Eq. ~12! originate due to the coupling of the equilibrium
plasma currents with the perturbed magnetic field; th
terms do not appear in the electrostatic model~8!. On the
other hand, the nonlinearity on the left-hand side of Eq.~9! is

due to theE3 ẑ convection of the parallel~to ẑ) electron
velocity perturbation, whereas the important nonlinear ter
in Eq. ~13! come from the nonlinear parallel electron iner
as well as the nonlinear Lorentz force. The parallel ph
velocity of the disturbances is assumed to be much la
than the electron thermal velocity.

III. DISPERSION RELATIONS

The local dispersion relation for electromagnetic wave
now derived by neglecting the nonlinear terms in Eqs.~12!
and~13! and the dust charge fluctuations. We suppose thaf
andAz are proportional to exp(ikyy1ikzz2ivt), whereky and
kz are the components of the wave vectork, and v is the
frequency of the oscillations, and that the scale lengths of
equilibrium inhomogeneities are much larger than the wa
length. The resultant dispersion relation is of the form

Fv2vsv1 in02
ky

2c2~kzv i02 in i !

vA
2~k21ky

2c2/vA
2 !

G
3F ~v2kzve0!1 i

neky
2le

2

~11ky
2le

2!
G

5F kz
2vA

21
4pckykz]x~Jei /B0!

~k21ky
2c2/vA

2 !
G

3
~11k–Sv0 /kz!

~11ky
2le

2!
, ~14!

where vsv54pecky]x(Zd0nd0 /B0)/(k21ky
2c2/vA

2) is the
dust convective cell frequency,vA(5cvci /vpi) represents
the usual Alfvén velocity, andk25ky

21kz
2 . We note that for

a highly dissipative case, the modes are damped. Also,
ky

2c2/vA
2@k2, the convective cell modes and Alfve´n waves

are linearly coupled. It should be noted here that the prese
of vsv is attributed to the presence of the static charged d
grains, and would not arise otherwise.

In the collisionless case, the dispersion relation~14! be-
comes
r

e
y
in

e

s

e
er

s

e
-

or

ce
st

v22vS vsv1kzve01
ky

2c2kzv i0

vA
2~k21ky

2c2/vA
2 !

D
1kzve0S vsv1

ky
2c2kzv i0

vA
2~k21ky

2c2/vA
2 !

D
2S kz

2vA
21

4pkykzc]x~Jei /B0!

~k21ky
2c2/vA

2 !
D

3
~11k–Sv0 /kz!

~11ky
2le

2!
50. ~15!

Equation ~15! predicts an oscillatory instability. Forv
.kzve0, the threshold condition is

S kz
2vA

21
4pkykzc]x~Jei /B0!

~k21ky
2c2/vA

2 !
D ~11k–Sv0 /kz!

~11ky
2le

2!

.S vsv1
ky

2c2kzv i0

vA
2~k21ky

2c2/vA
2 !

D 2

.

On the other hand, for a highly collisional plasma
which neky

2le
2@(11ky

2le
2)3(v2kzve0) and n i@kzv i0, we

have

v5vsv2 i F n01
ky

2c2n i

vA
2~k21ky

2c2/vA
2 !

1H kz
2vA

21
4pkykzc]x~Jei /B0!

~k21ky
2c2/vA

2 !
J ~11k–Sv0 /kz!

neky
2le

2 G .

~16!

Equation ~16! exhibits an instability if k–Sv0 /kz.1 and
4pkykzc]x(Jei /B0)/(k21ky

2c2/vA
2).kz

2vA
2 as well as both

the density and velocity gradients are negative. The thresh
condition is

S kz
2vA

21
4pkykzc]x~Jei /B0!

~k21ky
2c2/vA

2 !
D ~11k–Sv0 /kz!

neky
2le

2

.n01
ky

2c2n i

vA
2~k21ky

2c2/vA
2 !

.

Next, we focus our attention on sheared flow driven du
convective cells. The appropriate dispersion relation for
latter can be directly derived either from Eqs.~8! and~9!, or
by settingky

2le
2@1 in Eq. ~14!. We have

v22v@vsv1kz~ve01v i0!2 i ~n01ne1n i !#

5vLH
2

kz
2

ky
2F11

4p]x~Jei /B0!

kykzc
G S 11

k–Sv0

kz
D , ~17!

where vLH[(vcevci)
1/2 is the lower-hybrid resonance fre

quency, andvpi@vci has been assumed. An inspection
Eq. ~17! reveals that the dust-convective cells are driven
nonthermal level on account of free energy stored in
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1050 57MIRZA, FARIA, SHUKLA, AND MURTAZA
magnetic field aligned velocity gradient and the density
homogeneity. The maximum growth rate of the du
convective cell instability is roughly vLH(kz /ky)u@1
14p]x(Jei /B0)/(kykzc)#(11k–Sv0 /kz)u1/2 for Sv0,0 and
uk–Sv0u.kz .

IV. NONLINEAR SOLUTIONS

In this section, we present the nonlinear coherent vor
solutions of Eqs.~12! and~13!. Accordingly, we look for the
stationary solution of the nonlinear equations~12! and ~13!
in the stationary framej5y1gz2ut, by assuming that
uẑ3“f•“u@(cvci /vpi

2)“'
2 Az]z ; where g is a constant

and u is the translational speed of the vortex, by ignori
dissipative terms. For“2!vpi

2
“'

2 /vci
2 and ]z

2!“'
2 , Eqs.

~12! and ~13! can then be rewritten in the following forms

ui* ]j“'
2 f2ud]jf2~c/B0!J~f,“'

2 f!2~vA
2/c!g

3F H “'
2 2

4p

cg
]x~Jei /B0!J ]jAz

1~1/gB0!J~Az ,“'
2 Az!G50 ~18!

and

@]j2~c/ue* B0!~]xf]j2]jf]x!#F ~12le
2
“'

2 !Az2
cg0

ue*
fG

50, ~19!

whereud524pecvci
2]x(Zd0nd0 /B0)/vpi

2 , J( f ,g)[(]xf ]jg
2]xg ]j f ) is the Jacobian,g05g1(]xve0)/vce and uj*
5u2gv j 0.

The solutions of Eq.~19! can be obtained in two limiting
cases. First, when the scale size of the nonlinear structu
much shorter than the collisionless electron skin depth, t
the parallel electron inertial force can be neglected. For
case, Eq.~19! gives

Az'~cg0 /ue* !f. ~20!

Substituting forAz from Eq. ~20! into Eq. ~18!, we obtain

]j“'
2 f2

cm

ui* B0
J~f,“'

2 f!

2F ud

dui*
2

4pg0vA
2

cdui* ue*
]xS Jei

B0
D G]jf50, ~21!

whereg5g014p(le
2/c)]x(Jei /B0), m5(12g0

2vA
2/ue*

2 )/d,
andd5(12gg0vA

2/ui* ue* ).
Equation~21! admits both the dipolar vortex@19# and the

vortex street @20# solutions. The dipolar vortex appea
provided that @udue* 24pg0vA

2]x(Jei /cB0)#/(ui* ue*
2gg0vA

2). 0, and that the vortex profiles are similar
those given in Ref.@19#. On the other hand, the dusty vorte
street arises whenud5(4pg0vA

2/cue* )]x(Jei /B0). Here Eq.
~21! reduces to
-
-

x

is
n

is

]j“'
2 f2

cm

ui* B0
J~f,“'

2 f!50. ~22!

For m.0, Eq. ~22! is satisfied by

“'
2 f5

4f0K2

a0
2

expF2
2

f0
S f2

ui* B0

mc
xD G , ~23!

where f0, K, and a0 are some constant parameters. T
solution of Eq.~23! is @20#

f5
ui* B0

mc
x1f0lnF2 cosh~Kx!12S 12

1

a0
2D cos~Kj!G ,

~24!

which represents the Kelvin-Stuart ‘‘cat’s eyes’’ that a
chains of vortices fora0

2.1.
Second, we consider the case when the scale size o

nonlinear structure is of the order of the collisionless elect
skin depth and that the vortex translation speed is m
larger thangv j 0. Here a typical bounded solution of Eq.~19!
is

“'
2 Az5

1

le
2S Az2

cg0

u
f D . ~25!

Substituting Eq.~25! into Eq. ~18!, we obtain

@]j2~c/uB0!~]xf]j2]jf]x!#@“'
2 f1b1f2b2Az#50.

~26!

A possible solution of Eq.~26! is

~“'
2 1b12b3!f2b2Az1b3

uB0

mc
x50, ~27!

provided that g5g01(4p/c)le
2]x(Jei /B0). Here b15

2ud /u1gg0vA
2/u2le

2 , b252g0vA
2/cule

2 , andb3 is an ar-
bitrary constant of integration.

Combining Eqs.~25! and ~27!, we obtain

~“'
4 1x1“'

2 1x2!f2b3

uB0

le
2mc

x50, ~28!

where x15b12b321/le
2 and x25@(b32b1)1cb2g0 /

u]/le
2 . Equation~28! admits spatially bounded dipolar vor

tex solutions@21,22#. If we set b350 then the solution of
Eq. ~28! in the outer region (r .R) can be expressed as

f5@C1K1~s1r !1C2K1~s2r !#cosu, ~29!

whereC1 and C2 are constants,K1 is the modified Besse
function of the first order, ands1,2

2 5@2g16(g1
224g2)1/2]/2

for g1,0 and g1
2.4g2.0. Here g15b12le

22 and g25

2(b1 /le
2)1cb2g0 /ule

2 . In the inner region (r ,R), we
write the solution as
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f5FC3J1~s3r !1C4I 1~s4r !2
b3

le
2

uB0

mcx2
r Gcosu, ~30!

whereJ1(I 1) is the Bessel function of the first order havin
real ~imaginary! argument, andC3 and C4 are constants
Here, s3,4[@(x1

224x2)1/26x1#/2 for x2,0. Evidently, the
outer and inner region profiles of inertial electromagne
vortices are different from those of noninertial vortices f
which the vortex scale sizes are much smaller thanle . It is
worthwhile to mention here that the sheared equilibriu
electron flow is responsible for a complete localization of
dipolar vortex in the outer region. Furthermore, the consta
C1, C2, C3, C4, andb3 can be determined by matching th
inner and outer solutions off andAz and the higher deriva
tives “f, “'

2 f, “'Az , and “'
2 Az at the vortex interface

(r 5R). Mikhailovskii et al. @22# performed this calculation
and presented explicit expressions for the various c
stants.

In passing, we mention that stationary solutions
Eqs.~8! and ~9! can also be readily obtained in the movin
frame j5y1gz2ut, with uẑ3“f•“u@(B0 /c)vez]z . In
the absence of dissipative effects from Eq.~9!, we have
vez52(eg0 /meue* )f, which can then be inserted into E
~8! to yield

ui* ]j“'
2 f2S ud2

vLH
2 gg0

ue*
D ]jf2

c

B0
J~f,“'

2 f!50,

~31!

where we again assumed thatvpi
2 u“'

2 u@vci
2
“

2, and dis-
carded the dust charge fluctuation. It turns out that
ue* ui* 2ue* ud1gg0vLH

2 .0, Eq. ~31! admits dipolar vor-
tex of the type discussed in Ref.@19#, whereas forud

5gg0vLH
2 /ue* , Eq. ~31! reduces to the Navier-Stokes equ

tion which is identical to Eq.~22! except that herem51.
Clearly, for this case, we will have a chain of vortices th
are given by Eq.~24!.

V. SUMMARY

In this paper, we investigated linear as well as nonlin
properties of coupled Alfve´n and convective cells modes i
nonuniform multicomponent magnetized dusty gases.
this purpose, we employed the multifluid dusty plasm
model, and derived a pair of coupled nonlinear equations
both the electrostatic and electromagnetic waves in du
plasmas that have equilibrium density, magnetic field, a
magnetic-field-aligned velocity gradients. In the linear lim
we have derived local dispersion relations. The latter
analytically analyzed in order to demonstrate the existenc
both the collisionless and collisional instabilities of du
convective cells and dust-Alfve´n waves. Physically, the cur
rent convective instability arises because there appea
phase lag between the parallel electron velocity perturba
and the wave potential on account of the electron velo
gradient.
c
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e
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Finite amplitude disturbances in nonuniform dusty ga
weakly interact among themselves, and the nonlinear m
coupling can lead to the formation of dipolar vortices a
vortex streets. This has been analytically shown by seek
the stationary solutions of the governing nonlinear equati
~12! and ~13!. We find that dusty vortex streets appear in
region where the dipolar vortices are forbidden.

The present investigation of the dusty plasma wave g
eration and the nonlinear mode coupling leading to the f
mation of coherent vortex structures does not account for
dust charge fluctuations. However, it is expected that
latter should introduce a non-Landau-type dissipation@10#.
Accordingly, the growth rate of the instability has to ove
come the damping associated with the dust charge pertu
tion, whereas vortices might be amplified@20# in a dissipa-
tive dusty medium. Furthermore, the dust grains are assu
to be immobile, which is justified as long as the typical o
cillation frequency is much larger than the dust plasma a
dust gyrofrequencies. However, foru] tu@vcd and rd

2u“'
2 u

@1, wherevcd andrd are the dusty gyrofrequency and th
dust gyroradius, respectively, the dust grains would follow
straight-line orbit across the external magnetic field dir
tion. The corresponding dust number density isnd

'nd0exp(Zd0ef/Td), whereTd is the dust temperature. Thu
the inclusion of the dust dynamics shall give rise to a new
of nonlinear equations and new classes of unstable wa
and coherent nonlinear structures whose studies are be
the scope of the present paper. Finally, the stability of
dipolar vortices and vortex streets, as found here, has to
analyzed.

In conclusion, we stress that we have reported poss
mechanisms for the generation of electrostatic as well
electromagnetic fluctuations in the presence of shea
plasma flows in nonuniform magnetized dusty gases.
have also shown that the nonlinear mode coupling provi
the possibility of the formation of dusty plasma vortic
which can have different scale sizes. Thus, the results of
present work should be useful in identifying the frequen
and wave-number spectra of fluctuations and the feature
coherent nonlinear structures which are produced by she
plasma flows in nonuniform dusty gases. The latter are
quently found in cometary tails and interstellar clouds,
well as in many low-temperature laboratory devices.
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